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Abstraet--A theoretical analysis of a dilute fluid-solid suspension flow, based on the derivation of 
equations for linear and angular momentum fluxes in the solid phase, is presented. These equations turn 
o u t  to be particularly useful in the case of solid particles which only respond very slightly to fluid turbulent 
fluctuations, when the flow is bounded by solid walls. The applications of the method to a simple example 
of two-dimensional steady-state flow demonstrates the possibility of a second-order closure. Modelling 
and the expression of boundary conditions are obtained from the study of particle-wall collisions. In this 
way it is possible to establish a set of algebraic relations between kinetic transfers in the solid phase. 
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1. I N T R O D U C T I O N  

Among the suspension flows of solid particles, which belong to the two-phase flow family, some 
are characterized by the important influence of  the walls. The most typical example is provided 
by pneumatic conveying, which is also the oldest application since it dates from the last century. 
In this sort of  flow, the average aero- or hydrodynamic forces and the gravity forces have a 
preponderant role to play, particularly if the particles have a sufficiently high inertia to prevent 
their trajectory being influenced to any significant extent by turbulent fluid fluctuations. As a 
consequence, particle-wall collisions often occur far more frequently than particle-particle 
collisions. Flow in which particle-particle collisions have a negligible role to play are known as 
low concentration flows or dilute suspension flows. In this case, the presence of solid walls, 
combined with the fact that the initial conditions are different for each particle, leads to a 
disorganized motion of the solid phase: the trajectories of the particles passing through the same 
point are all different. This is enough to cause internal linear momentum transfers, and possibly 
angular momentum transfers, in the solid phase. 

To be more precise, we know that a local theoretical approach for a fluid-solid flow implies that 
we write averaged equations expressing, for each of  the phases, the conservation of  mass, 
momentum and energy (if the physical characteristics of the fluid are constant, as in our case, this 
last equation is needless for studying the dynamic problem). The averaging process causes the 
appearance, in the dispersed phase equations of  motion, of  terms analogous to Reynolds stresses, 
whose analyses, which are based on a "diffusion" type argument, can be satisfactory in some cases 
but do not fit the circumstances in others. 

The expression of these momentum transfers by means of a solid phase diffusivity (or "viscosity") 
has above all been used to deal with pipe flows of suspensions involving relatively small particles. 
Thus, Soo (1969) and Soo & Tung (1971), like Duckworth & Chan (1976), paid particular attention 
to the influence of  gravity and electrostatic forces. Nagarajan & Murgatroyd (1971) obtained 
relative velocities and concentration distributions in the absence of  gravity and electrostatic effects. 
Kramer & Depew (1972) calculated the velocity profiles for the case of  uniform concentration in 
a vertical pipe. Williams & Crane (1981) studied the possibility of  deposition, under the influence 
of  turbulence, for small particles of about 10 #m. An analysis based on the mixing length 
hypothesis has been suggested by Choi & Chung (1983), for a suspension of very fine particles 
which respond perfectly to the turbulent fluid fluctuations. Outside the influence of turbulence, it 
is also possible to talk about diffusion when the solid phase concentration is high enough to result 
in a large number of  particle-particle collisions. 
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On the other hand, diffusion style arguments are not appropriate if we are concerned with a 
dilute suspension flow which is controlled mostly by the average fluid motion, i.e. the inertia of 
the particles is so high that their motion is unaffected by the turbulence: in this case, one cannot 
talk about diffusion as being a major mechanism of  the transfer phenomena, since the trajectory 
of a particle is not subjected to fluctuations. In these circumstances, often encountered in gas-solids 
flows, we can ask what is the origin of the existence of  these momentum fluxes such as Reynolds 
stresses. Is it possible to ignore these terms, as has often been done? Except for special cases, the 
answer is no, because these "stresses" are related to differences which can exist, both in magnitude 
and direction, between the velocity vectors of particles located in the same volume element. These 
differences exist as soon as we are confronted with a disorganized motion due to particle-wall 
collisions. On this point we agree with Crowe (1982), who indicates that the "shear stress" term 
for the particle cloud is often neglected, even though "there is presently no quantitative justification 
for excluding this term, especially near a boundary where the particle can exchange momentum 
with the wall". It should be emphasized that the hypothesis of  a dilute suspension, which implies 
no interactions between particles, is not sufficient for cancelling these momentum transfers, unlike 
the assumption made by Rietema & van den Akker (1983). 

All the particles contained in the volume element must have the same velocity if these "stresses" 
are to vanish. This hypothesis can be considered to be implicitly admitted in the studies (carried 
out in the absence of gravity) of Hamed & Tabakoff (1973), who solve a non-steady flow along 
a flat plate, of Crooke & Walsh (1974), who deal with a two-dimensional flow in a pipe of infinite 
length, and of  Mitra & Bhattacharyya (1982), who consider non-steady flow between parallel 
plates. Durst et al. (1984) deal with a vertical pipe flow, starting with simplified equations which 
do not contain "shear stress" terms for the solid phase: this approximation results in a practically 
uniform relative velocity profile, which is physically unreasonable. The same simplified equations 
are used by Laitone (1981) to solve a gas-solid flow round a cylinder, and by Di Giacinto et al. 

(1982) for flow in a convergent channel. In these last two cases it seems to us that nothing authorizes 
the exclusion of  the momentum transfer terms in the dispersed phase. 

These momentum transfers are influenced by fluid-particle interactions, the resultant of which 
can possibly depend on the rotational velocity of  the particle: this is generally the case for the lift 
force. Therefore, variations in the average angular velocity in the solid phase have to be taken into 
account. This means we have to write not only the linear momentum conservation but also the 
angular momentum conservation in the solid phase. This permits us to express the total momentum 
of the particles as a function of the velocities of  their centres, by translating the fact that the 
velocities of different points of  the same particle are connected due to its non-deformability. Then, 
after averaging, we will see correlations appear (second-order moments) between the linear and 
angular velocity components. These terms express internal angular momentum transfer in the solid 
phase. The set of  "stresses" mentioned above and these angular momentum transfers will be termed 
"internal kinetic transfers" in the dispersed phase. 

In this paper, we propose a study of these kinetic transfers in a dilute suspension flow, based 
on the use of the equations of motion for individual particles, in order to compensate for the loss 
of information caused by the averaging process. The general formulation presented is not simply 
limited to flows for which diffusion models are inadequate, but is also applicable for cases with 
particles which respond well to turbulent fluctuations. The starting point is, of  course, provided 
by the equations of motion of the solid phase. These equations include the conservation of angular 
momentum, which, to make matters as simple as possible, will only be written for the case of 
particles possessing a spherically symmetrical inertia tensor. Having deduced equations verified by 
linear and angular momentum fluxes, we will point out the possibility of a second-order closure, 
using a simple example where particles are assumed to react only very slightly to turbulent fluid 
fluctuations. In this case, the study of particle-wall collisions can aid in the modelling and obtaining 
of boundary conditions. 

2. EQUATIONS OF MOTION OF THE SOLID PHASE 

Here, we have to apply the general equations which govern a multiphase flow to the case where 
one of the phases is made up of  solid particles in a suspension. Drew (1983) established such 
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equations through a general averaging process, which includes the normal space and time averages 
as special cases. These equations are in keeping with the instantaneous space-averaged equations 
of, for example, Fortier (1967), Nigmatulin (1979), Prosperetti & Jones (1984) or Kataoka (1986). 

In the following section, equations are derived for the conservation of linear and angular 
momentum, and it is necessary, for the simplicity of the latter, to assume that the particles are 
identical. That is the reason why a simple, non-mass-weighted average could be selected but it must 
be emphasized that this is not the only way to model the problem. 

2.1. Instantaneous space-averaged equations 

Let us write as ( q )  the instantaneous space phase average of any property q of the solid phase, 
namely 

( q )  = qdV.  [1] 
Vs 

where V~ is the volume of the solid phase located in the volume V where the averaging operation 
takes place, and let 

e = - -  [2] 
V 

be the volume fraction of the solid phase. 
The instantaneous equations of continuity and momentum conservation for the solid phase may 

be written as 

& 8 
at + Uxk (,(uk)) = 0 [3] 

and 

E @ 
E + Eg,, [4] 

where ui (i = 1, 2, 3) are the velocity components,/~ is the mean pressure in the volume element 
V, Ps is the solid material density (assumed to be constant) and gi is the x~-component of the 
acceleration of gravity. ( f )  denotes the space average of the actions exerted by the fluid on the 
particles, per unit mass and projection onto x~. In this way it groups the drag and lift forces acting 
on the N particles whose mass centre belongs to the volume V, assuming that each of the N particles 
is entirely contained within this volume, i.e. that no particle is cut by the boundary of the volume 
element. This is possible in a dilute suspension if the shape of the volume V is chosen judiciously 
(see Rietema & van den Akker 1983). 

By introducing, for any quantity q, the deviation Aq, defined by 

Aq = q - (q )  (and therefore (Aq) = 0), [5] 

[4] can be transformed with the help of the continuity equation [3] in order to obtain the following 
form, which contains explicitly the stress terms for the solid phase: 

C. dp F e ( f~ )+ (e(AUkAU,)). [6] 

Notice that when all the particles have the same volume, the space average (u)  of the velocity 
vector is equal to the arithmetical mean of the velocities of their mass centres. Indeed, let uP and 
V~ denote, respectively, the velocity of the mass centre and the volume of the particle "p". As the 
density Ps is assumed to be constant, we obtain 

I f  ~_~p~=~ f 1 N = u d Vs = u d V~ = ~ V{@ [7] 
= p = l  

and, if V~ = NV~, 

1 N 
<u> = up. [8] 
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The deviation Au v can then be interpreted as the difference between the velocity (of the mass 
centre) of the particle "p"  and the space-averaged velocity of the solid phase. 

For the sake of simplicity, especially for expressing the conservation of angular momentum, 
which is necessary for taking variations in the mean angular velocity into account, we will retain, 
in our following argument, the hypothesis of identical particles. We will also assume the particles 
are spherical (or at least have a spherically symmetrical inertia tensor), so that the angular 
momentum relative to the centre of mass of a particle rotating with angular velocity to is expressed 
simply by Jto, J being the moment of inertia of the particle with respect to any axis passing through 
its centre. 

The angular momentum of a single particle, relative to the centre of mass G of the N particles 
contained in the volume V, can be expressed by 

jtor + m GCd' x uP, 

where C¢ is the centre of mass of the particle. Averaging this expression over the N particles, one 
obtains the mean angular momentum in the volume element V: 

( J o  ° + mGC_¢ × u v> = J(to> + m<GG ° x u p> ___ J(to> [9] 

since the average of the second term on the 1.h.s. is of an order of magnitude lower than J(to> 
when the components of GC¢ ° approach zero. 

This result is quite analogous with the average linear momentum. Thus, taking the convective 
transfers into account, and using the same reasoning as that which lead to the averaged momentum 
equations, we can now obtain the equations expressing the conservation of angular momentum: 

t3 ~xk <M,> [lO] 
,~t (E <.. ,>) + (E <uk~o,>) = E J 

A more straightforward derivation of [4] and [10] will be given at the beginning of section 3, 
by direct averaging of the equations of motion of a single particle. 

After decomposition, [10] can be written as 

( ~ . ,  O <~>'~ <M,> O(E(AukA09i>)" [11] 

In these equations, Mi denotes the xi-component of the moment, at the centre of a particle, of 
the actions exerted by the fluid on the particles. The last term on the r.h.s, of [11] represents the 
divergence of an angular momentum flux, due to the existence of the deviations Au and Ato, which 
are not independent. 

As far as we know, the only authors interested in the conservation of angular momentum in the 
solid phase are Hamed & Tabakoff (1973). Unfortunately, the equation they obtained (for 
two-dimensional flows) implies the absence of angular momentum transfers that we have just 
shown to exist, and whose effects are certainly as important as those produced by linear momentum 
transfers, providing that transversal forces are present due to rotational motion. 

The last terms on the r.h.s, of [6] and [11] show that the momentum transfers in the solid phase 
are related to the differences between the velocities of individual particles--this is a very important 
point, justifying the decomposition proposed in [5]. 

2.2. Time-averaged equations of motion 
Even in the absence of any significant influence of the turbulence on the motion of the particles, 

the volume fraction E together with the space averages of the various kinematic quantities are 
subject to fluctuations due to the stochastic nature of such a flow. These fluctuations will produce 
additional momentum and angular momentum transfers, which can only be formulated by 
performing a time-averaging process. Although this will lead to a more complicated equations, it 
is necessary to introduce a new decomposition in order to take the influence of these time 
fluctuations into account. Subsequently, we will denote by an overbar a time-average calculation 
by integration over a long time interval compared to the time scale of these fluctuations, and we 
will identify the deviations between instantaneous and average values with a prime. Therefore, we 
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will write 

and 

e = g + E' [12] 

(u,) = (u,) + (u,)'. [13] 

We can see that this corresponds, for the quantity u~, to a double decomposition since [13] is 
equivalent to 

u, = (ui) + u;' [14] 

with 

and consequently, 

and 

u i '=  Au,+ ( u J ,  [15] 

( u i ' )  = ( u , ) '  [16] 

(u; ')  = O. [171 

The basic difference between the local instantaneous equations already presented and the 
time-averaged equations lies in the existence of supplementary terms resulting from fluctuations 
in the concentration of the solid phase. Otherwise, the momentum equations remain formally 
identical, the terms E (Auk Au~) and e ( A u  k Ao)i)  , which are representative of kinetic transfers, being 
replaced by e (u~ui') and E (u~o9 i'). Indeed, the continuity equation transforms into 

~-~ + (g (Uk)) = -- E'(Uk)' ' [181 

whereas the momentum equations can be time-averaged, bearing in mind [18] and the identity 

C (UkUi) "~- ( ( U k )  (Ui) "JI- (Ui) Et(Uk) t "q- (Uk)  C"(Ui) t "q- (- (U~UT), [ 1 9 ]  

to obtain 

+(--~ - L ~  Oxi Oxi) + g ( f ) + ¢  ( f )  +egi 

St c ' (u , ) '  - (uk) e ' (u , ) '  

- -  a ( u k )  - - a ( u , )  a 

-E'(ui)" C3X------~--E'(Uk)' C~X~- OXk E(u'~u;'>" [20] 

The same operation can be performed with the conservation of angular momentum. This 
leads to 

g ( ~  + (--~k~ ~ )  = l  (((M,) + E'(Mi)') - ~ E QOi)'-- (Uk) ~--~kkE'(eg~)' 

- -  O ( u k )  - -  O (oJ~) 
- <. ' (o9i) ' - -  - E ' ( U k ) ' - -  E. (U"ktO;'). [21] 

OXk OXk OXk 
Equations [18], [20] and [21] are just as applicable for a flow in which the dispersed phase move- 

ment is influenced by fluid turbulence as for a flow of highly inert particles which have "smooth" 
trajectories, because this does not prevent the existence of time fluctuations of the space-averaged 
values. Notice, however, that in the case of a dilute suspension, i.e. where there is no particle 
interaction, velocity fluctuations in the solid phase cannot be related to concentration fluctuations 
unless the trajectory of a particle depends on the mean distance between it and the others. This 
can happen in the case of small particles via fluctuations in the fluid velocity, possibly influenced 
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by the concentration, which in turn influence the particles' velocity fluctuations. It follows that with 
the hypothesis of a dilute suspension flow of highly inert particles, the only terms which are 
influenced by concentration fluctuations are the pressure term in [20] and the terms E ' ( f ) '  and 
c ' ( M y ,  which are related to fluid velocity fluctuations. 

In the following section, we will establish, with the only restriction being that of a dilute 
suspension, the transport equations for average kinetic transfers c(u'~u~') and E (u~co~'), allowing 
us to envisage a second-order closure of the momentum equations [20] and [21]. For the application 
described in section 4, we will adopt the further hypothesis of independence between concentration 
fluctuations and velocity fluctuations, as mentioned above. This assumption, which applies to the 
case of particles with high inertia, results in considerable simplification of the various equations. 

3. KINETIC TRANSFER EQUATIONS 

In order to establish these equations, we must perform the averaging operation of the substantial 
derivative (following the motion of a particle) of any extensive property q of the particles. This 
operation obeys an identity which is analogous to the classical transport theorem for a fluid, and 
was given by Nigmatulin (1979) for the general case of a multiphase flow. When applied to a solid 
particle suspension (with constant p~), this "transport theorem" can be written as 

( d q )  1 1 0  ~xk 3 =~- ~ ( e ( q ) ) +  (e(ukq)) • [22] 

This equation is a generalization of a result which was derived by Fortier (1967), in the case 
where q = momentum per unit mass, by introducing a probability density function for the particle 
velocity and examining the rates of momentum in and out through the boundary of the control 
volume. 

Notice that, when q = ui, [22] can be applied to the averaging of the individual equation of 
motion of a particle, 

d u  i 1 Off 
- -  + f  + &, [23] 

dt Ps Oxi 

leading to [4]. The same thing is true for the angular momentum conservation equation: 

dcoi Mi 
- [24] 

dt J '  

which yields [10], after averaging and application of [22] with q = eo~. 
The equation of motion [23], multiplied by uj, then averaged, leads to 

u/~7] = - (uj) ~-~x + (ujf~) + (uj)& [25] 

which can be added to the x;component of the equation of motion, multiplied by u,, in order to 
obtain an expression for the averaged time derivative of the product u,u/ 

d(uiuj) \ = _ l  ((ui) ~ff + (uj)_~x,)+ (u j j )  + ( u j i ) +  (ui)gj+ (uj)gi. [26] 
dt / p~ \ cxj 

Application of [22] yields: 

0~ (E (u, uj)) + (E(U, UjUk)) 
= E @ 

+ E(u,fj) + E(ujf,) + E(u,)&+ E(uj)gi [27] 

which results, after transformation and time-averaging, in a system of six partial differential 
equations for the correlations E <u;'u]>. This transformation is somewhat tedious and so it is worth 
describing just the main features. The averages E<uiuj> and c(uiujuk> are expressed using the 
following identities, which are easy to obtain: 

E<u,uj> = <ui> E<uj> + <uj> E<u,> - g <u,> <uj> + E<u~'u;> [281 
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and 

E(uiujuD = (u,) E(UjUk) + (U s) E(u,uD -- E(u~) (u,) (u s) 

+ (uk) E (u;'u;') + e (u;'u;' u/,). [291 

The 1.h.s. of [27] is expressed with the help of [28] and [29]. After rearranging, one obtains 

at (E <u, uj>) + (E(u,usu~>) = -~ ~(u;'u;'>) + (u~) ~<u;'u;'> 

+ E (U;'U~') ~ + (--~) ( ~  (E (Us)) + ~--~k(E (UkUs)) ) 

+ (Us)(f-- t (E(U~))+~----~k(E(UkU~))) 

+ '<u,>' ( ~  ' =a<u'>'\ 

a(us) ~ a ( u , )  
+E(U;'U~)--~X +E(UsUk)-ff~-Xk + (E(u;'uTu~)). [301 

The 1.h.s.s of the xr  and x;components of the instantaneous momentum equation [4], which 
appear in the above equation, are then replaced by the corresponding r.h.s.s. After simplification 
and use of continuity equation [3], all we have to do is identify with [27]. Finally, it is found that 
[27] can be written in the following form, which is characteristic of transport equations for the 
correlations E(ui'u~') since they concern their substantial derivatives calculated by following the 
mean average motion of the solid phase: 

a 
a 6(u;'uy) + (uk) -~xk6(u;'u'/) = e'(u,)' ( f j)  + 6'(us)' ( f )  + 6(u;'f;') + E(uTfT) at 

+E <u,>gj+E <us>g,-E (u,> \ at *~u~"-T~x~ ) 

(a(u,) .-~-~-, a<u,>'~ a<u s> 
--E'(us)'\ at *<'Uk2---~Xk)--6(U;'U'k) aXk 

- - a ( u , )  - - a ( u k )  a 
t t  H I t  

-,'<u;'u;> ~ ,<u;'u;') ax~ ax~ *<u'uju~) 

I e (u,)' + (u,>' + E (u,) ~ + E'<uj)' ~ . 
P~ 

[31] 

Apart from terms involving concentration fluctuations, the new unknowns which we must 
therefore try to model are the velocity-pressure correlations, the correlations introduced by the 
interaction terms E(u~'fj') and ¢(uj~fi'), as well as terms E(ui'u~'u/,). 

To establish the transport equations for correlations E(UI'097), we will follow the same 
procedure: we multiply [23], relative to ui, by ogj, and add this to the angular momentum equation 
[24], relative to ogj, multiplied by ui. Thus we arrive, after using the transport theorem, at 

_ ~ E (u, Mj) [32] a __a (E ap + E <cojf,) + ~ (~oj)g, + j Ot (6(UiO~J))+ aXk (UkUiOj)) = -- (O~J)~x i 
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that is to say a set of  nine equations for the nine correlations E<uicoj>, or E<u;'co~'>, since the 
averages E <uicoj> and E <uku~coj> can be expressed using [28] and [29] to obtain transport equations 
of correlations E<u~'coT> in a form comparable to [31]: 

a . . . .  - -  ll/F.<coj>,aff'+E,<coj>,a#'\+E,<coj>,g -~xi -~Xi) FtE<u,coj > + ?--TkE<ui'co;> = -ps 

+ £'<coj>' <f,> + E<co;fD 

1 
+ ff (E'<ui>' <mj> + E <u;'M 7 >) 

- E'<coj>' \ at 

-- (- <U ~'Uk----- ~ a <coj_____2~ - -  a <ui> 
ax~ E<co;uD ax---~ 

- -  O <U,> O 

-E<uI'COT> OXk aXk E(u~u~'coT)" [33] 

The six second-order correlations E <col'coT) can figure on the r.h.s, of these equations, via terms 
E <coj~'>, because the action of  the fluid on a particle is generally a function of  its angular velocity. 
These moments have not appeared up to now either in [6] and [11] or in [31]. This is why it might 
possibly be necessary to write, in addition to [31] and [33], the equations for the second-order 
correlations E <co i'coT>- These are obtained by multiplying each of  the angular momentum equations 
[24] by each of  the angular velocity components coj, i.e. 

< d c o i \ = l  <cojMi> [34] coJ / 
/ do, j \  

then, adding this to the analogous equation giving \ c o c ~ - / :  

d(co,coj) \ i 
= ~ (<co~Mj> + <cojM,>); [35] 

/ 

or, with the transport theorem [22], 

at (E<co~coj>) + (E<co,cojUk>) = ) (<coiMi> + <cojM~>). [361 

These six new equations can be transformed as before to be written as 

l 
E <co~'coy> + <uk> E <coi'co}'> = ) (E'<coi>' <Mj> + £'<coj>" <Mi> + E <co~'M}'> + E(co}'MI'>) 

(a<co > +  a<co& 
- E'<co,>' \ at axk ,I 

-E'<coj>'\ at axk ] 

a<coj> - - a < c o i >  
-E<co~'uD axk E<co';u'D ax~ 

d<uk> d 
- E<coi'co~') dXk aXk E<CO~'CO'jU'k'>. [37] 
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Equations [18], [20], [21], [31], [33] and [37] make up the system which has to be solved if we 
wish to use a second-order model to obtain, for example, profiles of translational velocities, 
rotational velocities or concentration of the dispersed phase. 

We have not mentioned the equations governing the fluid phase motion, which are coupled to 
the preceding ones via interaction terms; however, we know that the dilute suspension hypothesis 
allows us to neglect the action of the solid phase on the fluid phase, and therefore to solve the flow 
of the latter independently from that of the solid phase ("one-way" coupling). Experimental results 
concerning gas-solid pipe flows, obtained for instance by Tsuji & Morikawa (1982), Tsuji et al. 
(1984) and Oesterl6 (1987a), confirm that the fluid velocity profile is not significantly altered by 
the presence of particles provided that the loading ratio is < 0.1. Nevertheless, this assumption is 
not absolutely necessary in the following, where the fluid velocity v appears: all the derivations in 
section 4 remain valid, even if the fluid velocity is unknown, but in this case the solid phase 
equations have to be coupled with the fluid phase equations, thus leading to a much more 
complicated problem. Whatever the hypothesis concerning this point, the general problem is in any 
event an extremely complex one, and so for the moment we are obliged to limit ourselves to a simple 
case. The example dealt with in the following section, the purpose of which is to demonstrate the 
ways the theory can be applied in practice, is of a steady-state two-dimensional flow of a dilute 
suspension of high inertia spherical particles. 

4. APPLICATION TO A SUSPENSION OF COARSE PARTICLES 

Our definition of "coarse particles" applies to high inertia particles, which do not respond 
significantly to turbulent fluid fluctuations. We have already indicated that in this case there is 
independence between concentration fluctuations and velocity fluctuations (instantaneous space 
averages) of the solid phase. This leads to the vanishing of E'-terms in the foregoing equations, 
and allows the replacement of time averages E(ui'u~'), E(ui'coT) or ¢(co~'coT), respectively, by 
E(u~'u~'), E(u~',o~') or E(,o~',oT). 

This hypothesis is generally unsuited to liquid-solid flows. Therefore we prefer to deal with a 
gas-solid flow, where we know, in addition, that the effect of the pressure gradient on the motion 
of the particles is negligible, as pointed out by Soo (1982). 

We will also limit ourselves to a plane two-dimensional configuration, where the only linear 
velocity components are Ux and uy, and where the only angular velocity component is COz. Thus, 
we are led to a system of simplified equations, whose closure requires modelling of the third-order 

. . . . . . . .  ( ' ~  (u~og'-~ and ' ~  correlations (u-~x ), (u--~ uy), ~ ,  (u-~y ), ~ ,  (UxUytOz), ,uy cot,, (uycoz ). 
Useful information on this subject can be obtained by studying the behaviour of the solid phase 
in the neighbourhood of the wall. Indeed, as indicated above, the existence of kinetic transfers in 
this kind of flow is related to particle-wall collisions, and we can therefore expect that the whole 
of the flow will be dominated by this phenomenon. 

Next, the interaction terms will be described in detail, and finally we will show how the system 
of kinetic transfer equations can lead, under certain conditions, to their formulation by algebraic 
expressions. 

4. I. Study in the neighbourhood of a wall 
This study is based on the results concerning a particle-wall collision. We will suppose the wall 

to be normal to direction y, as in figure 1. The velocity components just before impact will be 
designated by a subscript 1, those just after impact by a subscript 2. We will call a the radius 
of the spherical particle, ~ and/a the static and dynamic friction factors and e the coefficient of 
restitution, defined by 

uy: = -euyi. [38] 

It can be easily shown that the collision occurs without sliding if 

lUxl - aogzll < ½/ao(1 + e)uy,. [39] 

In this case, the velocity components ux and o~z after impact are 

u~, = 71(5u~1 + 2ao9~1 ) [40a] 
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x 
im 

F i g u r e  1. P a r t i c l e - w a l l  co l l i s ion  c o n f i g u r a t i o n .  

and 

Ux2 
o9~2 = - - .  [40b] a 

In a suspension flow along a wall, with Uxl > 0, the sliding velocity at the beginning of the 
collision, which is uxl - a~o:l, is generally positive and much higher than %1. Therefore inequality 
[39] cannot be satisfied, so we are mainly concerned here with collisions accompanied by sliding. 
In this case, we obtain 

and 

Ux2 = Uxl --/~(1 + e)Uy I [41a] 

09z2 = 09zl + ~#(1 + e) Uyl. [41b] 
a 

These relations can be used to estimate the relative values of the various correlations at the wall. 
Among the N particles occupying a volume element adjoining the wall, let NI be the number of 
particles moving towards the wall ( "p : '  particles) and N 2 the number of particles moving away 
from it ("P2" particles). We will introduce the notations (q) t  and (q)2 to designate the average 
values calculated for these two classes of particles: 

1 NI 1 ~ q(p2). [42] 
(q>1=-1~! • q(P')' ( q ) 2 = ~ p  1 Pl=l 

The condition of zero mass flux at the wall is written as 

Nl(uy)~ + N2(uy)2 = 0. [43] 

Relations [38] and [41], valid for a particle, also express approximately the average velocity 
components of the "P2" particles in terms of the average velocity components of the "PI" particles. 
This would be entirely exact if we take an extreme model, where all the "p f '  particles have the 
same linear and angular velocity. In this hypothesis, the definition of the coefficient of restitution 
leads to 

(%)2 ~ - e (uy ) l  [44] 

and 

2 2 2 (u,)2 ~ e (uy)t. [451 
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These relations, together with [43], are also valid for time-averages. Thus, we deduce from 
[43] and [44] the expression of  the average value at the wall of  any quantity q: 

N t ( q ) l + N 2 ( q ) 2  e ( q ) l + ( q ) 2  
(q)w = N~ + N: ~ e + l  [46] 

Notice immediately that from [44]-[46] we can estimate the quadratic average -~ (uy)w, and hence 
"2~, (since (Uy)w = 0), as a function of  the average normal velocity of particles moving towards Uy / w  

the wall: 

,,2\ 2 2 e(Uy) ,  2 uy /w = (Uy)w ,~ e ( u y ) l  ,~ , [47] 

whereas relations [41a, b] lead to 

and 

(UxUy)2 ,~" - e ( u x u y ) l  + #e(l  + e) 2 (u~) ,  

By applying [46] 
(uymz)w = (u~e)')w), we obtain 

(UyOgz)2 ~. -e(UyOgz) l  -- 5-~-~ e(1 + e ) ( u 2 ) , .  
za  

and bearing in mind (Uy)w = 0 (which implies 

and 

[48a] 

[48b] 

(uxUy)w = (u'~u'/)w and 

. n . 2  
(UxUy~) w ,~" #~Uy )w [49a] 

5# ( ,,2b 
(Uy,O;)w .~ - ~  . u ,  .w. 

For the other second-order correlations, we use identities such as 

(u;'u]  ) = (u,  uj)  - (u~) (u~), 

~Ux  .,)w ~'~ # 2 ( U y 2 ) w ,  

5 # 2 ~  
(u~,o~')w ~ - T a  (u,)w 

which result in 

and 

[49b] 

[501 

[51a] 

[51b] 

. - x'IK'--.~ 7 1 ~  
UxUy 2w "" p .~Uy 2w,  

<,,~ ~ - ~ a ~  Ux ¢-,Oz)w ~ - -  

. . . . . . .  ~ 5# ~ 
UxUyCOz;w ~ ~ <.uy ;w, 

[53a] 

[53b] 

[53c1 

[53d] 

[53e1 

25p2 ~ [5 lc] 

Although these results are based on a simplifying schematization, they plainly indicate that 
second-order correlations representative of kinetic transfers cannot be supposed to be non-existent 
in the neighbourhood of a wall. Additionally, the foregoing relations provide boundary conditions 
which are possibly of  use in solving equations governing the solid phase flow. 

The same process, applied to third-order correlations, with the help of averaging identities 
such as 

(u~'u~'ui:) = (u iu juk )  - ( u i )  ( u j )  ( u k )  - ( u i )  (uTu'~) - ( u j )  (u'k'u~') - (Uk)  (U~'U~'), [52] 

can yield, after some calculations, the following estimations: 
/..,'7777;J~- ~ ,  3 ~  
<,Ux )w ~ # ,,,Uy 2w, 
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,,~,,~,,. 5/~<, ,,3~ 
Uy ~ z / w  '~ - - ~ a  \Uy  /w,  

,,¢;~ ,,2 b 2 5 p 3  ,,3 
u~_~ .w~q-j<uy >w 

[53f] 

[53g] 

,,o~,,2,~ ~ 25/~2 ( ,3x~ [53h] 
Uywz  /w ~ ~ \Uy /w" 

In these relations [53a-h], the various third-order correlations are expressed as a function of one 
of them, namely <u~a>,, which can be approximated, thanks to [46], by 

<Uy3>~ ~ e(1 - e)<Uy3>l [54] 

or, in terms of \uy~' ,,2...., according to [47]: 

1 - e ~ 3. [55] <,,3~ 
U y / w ,~, - - ~  

Relations [53a-h], when associated with [55], can constitute the basis of the modelling of the 
third-order correlations, in so far as all of these are expressed in terms of the second-order 
correlation <u;2>. Although these relationships were derived in the neighbourhood of the wall, it 
is reasonable to apply them to the remainder of the flow field, since the whole flow is governed 
by this particle-wall collision mechanism. 

However, in order to avoid unnecessary complexity at this stage, we will later consider these 
third-order moments to be negligible. This hypothesis is based on the following argument. Equation 
[55] makes possible the comparison between the orders of magnitude of correlations such as 
<u~'u~'u~> and terms such as <u~> <uTu'~ ). For example, <u"3> must be compared with <Ux> <Ux2>. 
Equations [53a] and [55] lead to 

1 ~ e 

-x ,w - ~ -  X t <Uy >w , [56] 

whereas, according to [51 a] 

(Ux >w ~ 2 ,,2 ~,Ux ;w ~" # <Ux>w <uy >w. [57] 

In the most frequent case of a restitution coefficient not too far from unity, the r.h.s, coefficient 
in [56] is small compared to unity, so there is no doubt that 

1 - e  <Ux >w~ ~ ~<Z~u~2>w [581 
and we can indeed see that we do have, at least in the neighbourhood of the wall and probably 
in all the flow field 

< u ~r> << ( - ~  < u"-~. [59] 

The same argument applies to the other third-order correlations and leads to similar results, thus 
justifying the hypothesis made in the closure example advanced later in this paper. 

4.2. Expression of the interaction terms 
At this stage, all we have left to do in order to close the system made up of the equations of 

motion and the equations for kinetic transfers (or second-order moment equations) is to express 
the correlations between velocity fluctuations and fluctuations in aerodynamic forces, in terms of 
the first- or second-order moments. 

First of all, let us examine the terms related to fluctuations in the aerodynamic resultant, which 
consists of the drag force, which we will call fD (per unit mass), and the lift force, fL- It is always 
possible to define the relaxation time t* of a particle by expressing the drag force per unit mass as 

1 
fD = -~-~ (u -- v), [60] 
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where v is the fluid velocity ("at a distance" from the particle). For a gas-solid flow (i.e. ps>>pr, 
Pr being the fluid density), and if Stoke's law applies, the relaxation time is given by 

t* = 2psa~ [61] 
9r/ ' 

where ~/is the dynamic viscosity of the fluid. 
This supposes that the Reynolds number (based on relative velocity) of the sphere is much 

smaller than unity. If  this is not the case, the relaxation time, which can always be defined by [60], 
is not constant, but is a function of the relative velocity magnitude. Therefore, in order to express 
velocity--drag correlations in a usable form, it is convenient to assign locally a constant value to 
t*, corresponding to an average relaxation time for the particles located in the same volume 
element. The only aim of this hypothesis is to allow us to make the following approximation: 

ui'u~' ~ <ui'uT> [62] 

which will be useful in the derivation of the velocity-drag correlations with respect to the 
second-order velocity correlations. 

How this approximation is suitable in the case of coarse particles, for which the Reynolds 
number based on the relative velocity is often higher than unity, can be evaluated by the following 
numerical example. Consider glass beads, with density Ps = 2600 kg/m 3 and dia 0.1 mm, conveyed 
by air in a 20 mm dia pipe, with velocity ,-,30 m/s: it was shown (Oesterl6 1986) that in such a 
gas-solid flow, the motion of the particles is not influenced by the fluid turbulence, while the mean 
relative velocity is close to 0.6 m/s, corresponding to a mean Reynolds number close to 4. At this 
Reynolds number, the actual relaxation time is t* = 0.060 s. If the relative velocity is reduced to 
0.3 m/s or increased to 1.2 m/s, then the actual relaxation time will be increased to 0.067 s or 
reduced to 0.051 s, respectively. It is believed that such variations are sufficiently slight to permit 
us to make the assumption defined by [62]. 

Lift, which is due to the rotation of the particle relative to the fluid, was calculated, the Reynolds 
number still being small, by Rubinow & Keller (1961). Per unit mass, this lift can be written as 

fL= to--~Vxv x(u--v). [63] 

Although experimental data are lacking at present in the range of intermediate relative Reynolds 
numbers, this expression seems to be valid for Reynolds numbers up to 10, since it was applied 
by White & Schulz (1977) for the computation of particle trajectories, with relative Reynolds 
numbers of the order of 10, leading to an excellent agreement with experimentally observed 
trajectories. 

It must be pointed out that lift can exist, due solely to the velocity gradient, without any 
rotational velocity. This was calculated by Saffman (1965), but it is very small compared with that 
in the case of high inertia particles. Therefore, we will confine ourselves to expression [63] which, 
connected with [60] and [62], leads to the following results for the correlations between velocity 
and aerodynamic resultant components: 

< u : f " >  = --T~(Ux >--~p~ <-~-~+2\ay 
<u;::>=- <u:u;>- 

~G\ 7 .... 

> 

<u~f~> = 

<u';f :> = 

- -  >} . . . . .  [64a] +(<u ,>-v , )<UxCO= , 

. . . . .  >}  [64b] + (<u,> - v , )<u:o= , 

i #  # i  - -  i i  t l  " 

--~ <u:<uy> +-~--~p, <~>+2\ay ~x ) _j ~,Ux .~ + (<u:> - v,3<ux~=> , [64c] 

[64d] 

MF 15/2~C 
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( to , f ; )  = --i-i(u;m") -~-~p~ ~-~-~+2\Oy + OxJ (u'~o)2) +((Uy) -vy)(¢o'~ 2) [64e1 

and 

( w : f ; ) = - l ( u ; w : ) + - ~ p ~  ~-~+5~,-~y cgx] (u:w~') + ((ux) - ~x) (w~'2) " [64f] 

These results are rather simple, because fluid velocity turbulent fluctuations and solid phase 
velocity fluctuations are independent for high inertia particles. 

Together with [63], Rubinow & Keller (1961) obtained the theoretical expression of the moment, 
at the centre of the sphere, of the actions exerted by the fluid on the particle: 

M = - 8 ~ z r / a  3 ( t o  - / V x v ) ;  [65] 

i.e. by introducing, as with drag, a relaxation time t* for the rotation: 

1 1 M =  (to l 7 ~l* - ~ V x v), [66] 

where J = 2ma2/5 is the moment of inertia of the sphere and 

psa 2 
t* = 15----~" [67] 

From this we can deduce the expressions for the velocity-torque correlations: 

and 

. . . .  ~ (  (uxM~) = - u~e)"), 

J t! It 

(uyM") = --f-(l (Uym~) 

[68a] 

[68b1 

J 
(a~ 'M' )  = - t--~ (°9~'2)' [68c1 

4.3. Consequences on kinetic transfers in the solid phase 
Here we will limit ourselves to establishing a simple formulation, via algebraic relations, of 

kinetic transfers. This is valid for such a steady-state two-dimensional flow, as the convection terms 
which appear in the system of equations obtained in section 3 are negligible or non-existent. We 
can, for example, take the case of a parallel or nearly parallel flow (direction x) in which we can 
assume ( u y ) -  0, which covers a fairly wide range of practical applications (pipe flows, for 
instance). 

In these circumstances, [31], [33] and [37] lead to the following set of six equations: 

t* ~ + [(u~r) (u;o) / )  + (O~zr) (U;~Uy)I = 0, [69a] 

2 3pr 
. . . . . . . . . .  -- -- (uy ) dy 

t.(UxUy)+-~p[(Ux,) (U~Og~)+(O)~r)((U--~') (U--~)] .2 d(ux) =0,  [69b] 

\ p, dy  I (u'u'~) = 0 ,  [69c] 

/ 1  aN . . . .  43pf - -  (og.r~ + ~y~ -~-~+-~l)(uyto,)+ [(u~,) (cop) (u: to / ) ] - -  (u-~y') d ) =0,  [69d] 

( 1  +t-~) ( 4 ~  f ~ y ~ > )  - - d ( o g ~ ) = 0  [69e] (u~to~) + ~ + (u~m~) + (U~Uy) dy 
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and 

~Gm+(u;“:)y=o, 
I 

where (u,) is the relative linear velocity, 
-- 
(u,) = (KC) - ir,, 

and (CO,,) is the relative angular velocity, 

[701 

- - (w,)=(q)+; $+Z . ( > [711 

Equations [69a-fl form a homogeneous linear system for the six kinetic transfers. Therefore their 
compatibility supposes that the determinant is zero. After some calculations, we find that this 
compatibility condition can be translated by the following equation, which expresses a direct 
relationship between the linear and angular velocity profiles: 

- d&J 
t *2(%r) 

(- 

3~,---- 
-+-(CO,) 

dy 4~s 
+t*t:(u,)- 

-d(cQ +4pISo 

dy 3Pf * 
[74 

When this condition is satisfied, we can express five unknown second-order correlations in terms 
of the sixth one, for instance <t(c2>: 

(u;o:)= -(uy )t, - 
,ry *d(%) 

dy 
and 

[73al 

[73bl 

[73cl 

[73dl 

[73el 

These algebraic expressions of the second-order moments, representative of kinetic transfers, can 
be used as shear-stressdeformation-rate relationships for the dispersed solid phase. When 
combined with the compatibility equation [72] and with the equations of motion, they can lead 
to a complete solution for a gas-solid flow corresponding to the hypothesis made above. 

Furthermore, it should be pointed out that expressions [73a-e] and boundary conditions 
[49a,b] and [Sla-c], which were obtained above by studying particle-wall collisions, are perfectly 
compatible. From these relations, we can deduce, by identification, the following boundary 
conditions expressed in terms of the average linear and angular velocities: 

+ 3Pr- 
-(%)w” -$ 

w 4~8 
[741 

and 

5. CONCLUSIONS 

[751 

The general equations governing the transfer of linear and angular momentum in the solid phase 
have been established here for the case of a dilute suspension flow. This formulation is particularly 



170 B. OESTERLE 

useful for particles which have such high inertia that their motion is barely influenced by fluid 
turbulence: thus the solid phase flow is only conditioned by the balance between gravity forces, 
mean aerodynamic actions and kinetic transfers due to the existence of collisions against the solid 
walls. In these circumstances, we are led to a second-order closure problem, which is solved in 
section 4 for a simple application, namely a parallel two-dimensional steady-state flow. It seems 
possible to apply the results of this study to all nearly parallel flows, for example boundary-layer 
flows, or the flow in the inlet length of a pipe. 

The present analysis is based on the use of a non-mass-weighted space average, but it must be 
emphasized that this is not the only way to model the problem. 

To conclude, we would like to point out that the first tests of the calculation of angular velocity 
profiles are leading to promising results, in so far as they are in good agreement with a numerical 
simulation being undertaken at the same time (Oesterl6 1986, 1987b). 
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